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Abstract

A computational framework for the efficient analy-

sis and optimization of dynamic hybrid energy sys-

tems (HES) is developed. A microgrid energy sys-

tem with multiple inputs and multiple outputs (MIMO)

is modeled using the Modelica language in the Dy-

mola environment. The optimization loop is imple-

mented in MATLAB, with the FMI Toolbox serving

as the interface between the computational platforms.

Two characteristic optimization problems are selected

to demonstrate the methodology and gain insight into

the system performance. The first is an unconstrained

optimization problem that optimizes intrinsic proper-

ties of the base generation, power cycle, and electri-

cal storage components to minimize variability in the

HES. The second problem takes operating and capital

costs into consideration by imposing linear and non-

linear constraints on the design variables. Variability

in electrical power applied to high temperature steam

electrolysis is shown to be reduced by 18% in the un-

constrained case and 11% in the constrained case. The

preliminary optimization results obtained in this study

provide an essential step towards the development of a

comprehensive framework for designing HES.

Keywords: hybrid energy systems; dynamic simula-
tion; optimization; renewable energy; FMI

1 Introduction

Hybrid energy systems (HES), which may combine

multiple energy resources to achieve improved per-

formance or cost efficiency, have attracted consider-

able attention in the United States and internationally

due to developments in renewable energy technolo-

gies as well as economic, political, and environmen-

tal concerns regarding existing energy infrastructures.

One notable challenge to the design and deployment

of HES is the difficulty in modeling the operation and

performance of such systems. Traditionally, electric-

ity is produced from baseload generation (e.g., nuclear

and coal plants), which operate at near steady state

conditions with little variability. In contrast, renewable

energy sources (e.g., wind turbines and concentrated

solar plants) are highly dynamic with very significant

variability. The addition of a renewable component to

the energy infrastructure creates an enormous increase

in the number of possible operational situations that

must be considered, and thus greatly complicates the

design process. Although it is well understood that a

large energy storage device capable of achieving high

rates of charge and discharge is necessary for mitigat-

ing the variability of renewable energy sources, the de-

sign and control of HES makes little use of proper de-

sign optimization methodology. In this study, we seek

to apply optimization methods in order to gain a bet-

ter understanding of the complex dynamics governing

HES, and to obtain insights towards how to properly

design such systems to maximize performance and

cost efficiency.

To achieve the desired improvements in HES de-

sign, appropriate simulation and optimization tools

need to be selected. The Modelica language is well

suited for studying complex systems such as HES due

to its object-oriented structure and acausal approach

to modeling. On the other hand, the MATLAB envi-

ronment provides a variety of optimization methods,
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including those available in the Optimization Toolbox.

In numerical optimization, it is of critical importance

to automate the simulation process, because manual

iterations quickly become impractical as the problem

size is increased. Since our HES model and optimiza-

tion algorithms are implemented in different software

environments, a suitable tool for coupling diverse nu-

merical tools is required. For this purpose, we use

Functional Mockup Interface (FMI), which has been

successfully demonstrated for both model exchange

[1] and co-simulation [2]. In the present framework,

we apply the FMI for model exchange.

The organization of the paper is as follows. First, we

introduce the computational framework established in

this study, with a brief summary of the HES model for-

mulation and optimization approach. We then present

two benchmark optimization problems to demonstrate

the established methodology, followed by a discussion

of the simulation and optimization results. Finally,

we offer some concluding remarks in addition to an

overview of future research directions related to this

topic.

2 Computational framework

An illustration of the computational framework estab-

lished in this paper is provided in Figure 1.

Initialize
Problem

Optimality
Satisfied?

Update
Iteration

Interface

HES Model

Optimized
Solution

No

Yes

Optimizer
MATLAB

FMI

Dymola

Figure 1: Schematic of computational framework.

Note that, as previously mentioned, the FMI is used

to allow the MATLAB-based optimizer to modify in-

puts to the HES and setup additional simulations by

building a Functional Mockup Unit (FMU) of the

Modelica HES model. Also note that the optimization

loop conducted in MATLAB may require a large num-

ber of iterations before converging to the optimized so-

lution, and thus it is important that the HES model be

sufficiently robust and flexible to handle a variety of

potential operating scenarios. In the following section,

we present the HES model considered in this work and

discuss the concepts used in creating the model to en-

sure this robustness.

2.1 HES model

As mentioned above, the HES model considered in

this work is implemented in the Dymola environment

of the Modelica modeling language. As shown in Fig-

ure 2, the HES model has a configuration that includes

multiple energy inputs and outputs. In this case, ther-

mal and electrical energy in excess of the demand to

the grid is dynamically distributed to a high temper-

ature steam electrolysis (HTSE) process, which pro-

duces chemical products (hydrogen and oxygen) to

complement the electricity produced by the HES. In

a traditional hybrid energy system, multiple input en-

ergy sources are combined to provide a single output

(MISO), i.e., electricity. The drawback of such a con-

figuration is that in case the energy supply exceeds

the demand, excess energy is either wasted or must be

transferred to large storage devices, which are expen-

sive. Therefore, the MIMO system can be expected

to offer significant advantages in flexbility, utilization

and efficiency over the MISO system, as reported in,

for example, [3, 4].

 

HTGR

Renew able

He_Dist

Battery

DemandE_Dist

HTSE

Brayton

Grid

H2

O2

Figure 2: Model of Advanced HES configuration, im-

plemented in Dymola.

Note that the HES considered here contains two

types of energy flows: thermal (in the form of heated

helium) and electrical. The conversion of thermal to
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electrical energy occurs in the Brayton power plant,

where heated helium (the working fluid) carries ther-

mal energy provided by a high temperature gas reactor

(HTGR). Electrical power from the Brayton plant is

combined with that produced by a wind turbine (the

renewable source), which is regulated by an electrical

battery. Two distribution centers, one for helium and

one for electricity, are used to dynamically calculate

the amount of each energy type to be distributed to the

HTSE to match the necessary electrical power output

to the grid. Note that the HES model in Figure 2 in-

cludes two types of arrows: the solid (blue) arrows rep-

resent energy flows (helium and electricity), while the

dotted (red) arrows represent information flows. For

example, the amount of electricity distributed to the

HTSE unit is needed at the HTGR and helium distri-

bution center to calculate the required mass flow rate

of helium. Similarly, the electricity distribution center

makes use of information about the electricity demand

in the grid to calculate the relative amount of electric-

ity to be dynamically distributed between the grid and

HTSE. For computational simplicity, detailed compo-

nents within the subsystems such as pipes, valves, tur-

bines, etc. are not considered in this initial effort; the

system dynamics are instead captured by a series of

transfer functions, switches, logic blocks, and other

signal-based elements. The plan is to eventually re-

place these with models that more accurately capture

the relevant physics; this topic is discussed further in

the Conclusions and future work section. We next de-

tail the models for the individual subsystems and com-

ponents in the present computational framework.

KHe,h
htgr

τhtgrs+1

Ke
htgr

P e
htse

Ke,b
htgr

KHe,b
htgr

τhtgrs+1

ṁHe
total

ṁHe
htse

+

-
+

P e
brayton

+

ṁHe
brayton

Figure 3: High temperature gas reactor model.

A schematic diagram for the HTGR is shown in Fig-

ure 3. The electrical power entering the HTSE (Pe
htse)

is provided by the electricity distribution center, and is

the input to the HTGR. The HTGR model then uses

this information to calculate the amount of high tem-

perature helium that would correspondingly be needed

by the HTSE. Also note that the total amount of helium

entering the Brayton plant is controlled by the amount

of electricity directed to the HTSE. In an actual re-

actor, the operating conditions and output should ide-

ally be constant, as fluctuations can cause excessive

wear on the components and significantly shorten the

lifespan of the system. Therefore, the variability in the

HTGR generation will be an important component to

the cost function used in the optimization of the HES

in future work.

Revisiting Figure 2, we note that the mass of heated

helium from the HTGR then enters the helium distri-

bution center, where some of the helium is channeled

to the HTSE for chemical production and the remain-

der is sent to the Brayton plant for electricity genera-

tion. As in the HTGR, the amount of electricity enter-

ing the HTSE is used as an input to the helium distribu-

tion center to calculate the flow of helium that needs to

be directed to the HTSE to achieve near-stoichiometric

conditions there. This is accomplished with the fol-

lowing equations:

ṁHe
brayton = ṁHe

total − ṁHe
htse (1)

ṁHe
htse = KHe

htsePe
htse (2)

The Brayton plant is represented by a first-order

transfer function

Hbrayton(s) =
Ke

brayton

τbraytons+1
(3)

where the gain Ke
brayton is a lumped quantity that ac-

counts for efficiency and unit conversions, and the time

constant τbrayton can be varied according to the design

and operation of the Brayton plant.

The Brayton power plant is one source of electric-

ity in the system; the other is a series of wind tur-

bines, which serve as the renewable source in this

HES configuration. Note that as shown in Figure 2,

the wind power is not inputted directly to the elec-

tricity distribution center, but via a grid-scale battery.

This is because the battery model does not model the

charge and discharge behavior of the battery directly,

but rather the operational impact of the battery on

dampening excessive unsteadiness due to high vari-

ability in available wind power. The renewable power

is modeled as a time-varying input signal to the battery

based on available wind speed data from the National

Renewable Energy Laboratory (NREL), for a site in

Wyoming.

As shown in Figure 3, there are four operating

regimes for a wind turbine, separated by critical wind

speed values. At wind speeds below a minimum cut-in

velocity, there is insufficient kinetic energy in the wind

to cause any rotation, and thus no electrical power

is produced. At wind speeds above a cut-out veloc-

ity, a braking system is activated for safety reasons,
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Figure 4: Turbine power vs wind speed.

and again no power is produced. Between the rated

and the cut-out velocity values, the turbine provides a

steady maximum power level, also known as the rated

power. Finally, for the range between the cut-in and

rated speeds, the power is calculated by the following

equation:

P = η
1

2
ρU3 πd2

4
(4)

where η is the conversion efficiency of the wind tur-

bine, ρ is the density of the air at the site, U is the wind

velocity, and d is the diameter of the turbine blades. In

essence, this equation relates the power delivered by

the turbine to the amount of kinetic energy available

in the wind, via an overall lumped efficiency number.

At a typical site, the majority of the turbine operation

occurs in this regime.

Like the Brayton plant, the battery is modeled using

a first-order transfer function:

Hbattery(s) =
1

τbatterys+1
(5)

We assume the maximum power delivered by the bat-

tery is equal to the renewable power, so a unity gain

is used. It is important to not confuse the time con-

stant τbattery with the charge or discharge rate of the

battery. Instead, the time constant is used to charac-

terize the smoothing effect that the battery would have

on the electricity delivered by a renewable and battery

arrangement.

Electrical power from the Brayton plant Pe
brayton

and the renewable and battery arrangement Pe
battery are

combined in the electricity distribution center. The

electrical distribution center contains a logic block that

dynamically calculates the distribution of electricity

to the grid and HTSE. When the combined electrical

power Pe
avail is less than the grid demand, all available

power is directed to the grid. When excess power is

available, it is directed to the HTSE. This is modeled

using the following equations:

Pe
avail = Pe

brayton +Pe
battery (6)

Pe
grid =

{
Pe

demand if Pe
avail > Pe

demand

Pe
avail otherwise

(7)

Pe
htse =

{
Pe

avail −Pe
demand if Pe

avail > Pe
demand

0 otherwise
(8)

Finally, electricity and helium energy flows are com-

bined in the HTSE system, whose corresponding

model is shown in Figure 5.

P e
htse

K
H2
htse

τhtses+1
ṁH2

htse

KO2

htse ṁO2

htseṁHe
htse

Hydrogen

Oxygen

Figure 5: High temperature steam electrolysis model.

As illustrated by the dotted line in Figure 5, the mass

flow rate of helium ṁHe
htse enters the HTSE but is not

used in any calculations. This is because the helium

distribution center ensures that the appropriate flow of

helium is directed to the HTSE in accordance with the

amount of electricity being consumed there. There-

fore, only one of the two parameters is needed in the

HTSE model.

Values of all simulation parameters, including gains

in the blocks shown in Figures 3 and 5, can be found

in Table 1 in section 3.

2.2 Optimization methodology

A general optimization problem can be written as a

function minimization problem, as follows:

minimize f (x), f : ℜn → ℜ (9)

In general, the values of the design variables x are

selected within a bounded range, while satisfying in-

equality constraints ck and equality constraints ĉ j:

subject to

⎧⎨
⎩

xlower ≤ x ≤ xupper

ck(x)≤ 0, k = 1, ...,m
ĉ j(x) = 0, j = 1, ..., m̂

(10)

Solving this general optimization problem requires an

algorithm that iteratively adjusts the values of the de-

sign variables until some termination criterion regard-

ing the values of the objective and constraint func-

tions is met, most commonly when the Karush-Kuhn-

Tucker (KKT) conditions are satisfied [5]. Many dif-

ferent types of optimizers have been developed and ap-

plied to a wide variety of engineering problems. These
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include gradient-based and gradient-free methods, as

well as hybrid approaches for mixed-integer problems

[6, 7] and surrogate-based methods [8, 9]. As shown

in Figure 1, in this case we adopt a black-box op-

timization approach, in which the optimization algo-

rithm uses the HES model output to update each itera-

tion of the optimization loop, but does not access any

state variables within the HES model. In selecting an

appropriate optimization algorithm, it is important to

consider the nature of the objective function and as-

sociated design variables, and match the optimizer ac-

cording to the mathematical properties of the problem.

In general, gradient-based methods converge more ef-

ficiently than gradient-free methods, and are thus pre-

ferred for smooth problems [10]. However, the objec-

tive function in this study, defined in section 3 as the

total variability in the electrical power delivered to the

HTSE, is very noisy with a large number of local min-

ima that are problematic for gradient-based methods.

Since the optimization routine is conducted in MAT-

LAB, we select the fminsearch function as the opti-

mizer. This is an implementation of the Nelder-Mead

simplex method [11] included in the MATLAB Opti-

mization Toolbox.

The Nelder-Mead method creates a simplex with

n+1 vertices in an n-dimensional design space, and it-

eratively manipulates the size and shape of the simplex

using operations such as reflection, expansion, con-

traction and reduction based on the relative objective

function values at the vertices. The method is gradient-

free because only the values of the objective functions

at the vertices are used, and thus it is suitable for noisy

or discontinuous functions. The general Nelder-Mead

method is valid for unconstrained optimization prob-

lems; to handle constraints, we modify the objective

function f (x) by introducing a penalty function:

f̂ (x) = f (x)+ p(x) (11)

The penalty function p(x) is equal to zero in the fea-

sible space, and gives a positive value when a con-

straint is violated. We then apply the optimizer to min-

imize the modified objective function f̂ (x) instead of

the original function f (x). We use a quadratic form of

the penalty function that can be easily computed:

p(x) = ρ
m+m̂

∑
i=1

max(0,ci)
2 (12)

where m and m̂ are the number of inequality and equal-

ity constraints, respectively. This penalty function is

valid for both inequality and equality constraints [12].

The coefficient ρ must be large enough to force the

optimizer into the feasible space when a constraint is

violated; a value of ρ = 10 is found to be sufficient in

this study.

The time constants of the HTGR, Brayton plant,

and battery are designated as the design variables.

Although the Nelder-Mead simplex method has been

shown to suffer from poor convergence rate for prob-

lems involving a large number of design variables, it is

suitable for the three variables considered here [13].

3 Problem formulation

Available wind velocity data are sampled at time inter-

vals of 600 seconds; we conduct our simulations with

the same time step size in order to avoid numerical er-

rors that would arise from interpolating between data

points. All simulations are conducted for a time period

of one week (6.048×105 seconds), for a total of 1009

time steps per simulation. This time period is selected

to balance the need to capture the effects of variability

in the renewable energy input, with the need to con-

duct simulations at a feasible computational cost. As

shown in Figure 6, the wind turbine experiences very

fast dynamics, with numerous transient peaks and val-

leys observed in the velocity and power profiles within

a single week. This high degree of variability confirms

that the time period selected provides a representative

sample of the overall long-term variability in renew-

able energy input experienced by the HES.
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Figure 6: Wind velocity and turbine power profiles for

one week sample time period.

Since the properties of the wind turbine are assumed

to be constant throughout the simulations, we lump all

of these values from Equation 4 together, such that

each individual turbine provides maximum of 2 MW

rated power. This is equivalent to an overall conver-

sion efficiency of 55%, air density of 1.2 kg/m3 and
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Parameter Symbol Value Units

HTGR

Power output Ke,b
htgr 135 MWe

He reactor gain KHe,h
htgr 0.464 kg/MJ

Power to mass flow KHe,b
htgr 1.06 kg/MJ

Electrical gain Ke
htgr 0.0838 -

Brayton Mass flow to power Ke
brayton 0.9429 MJ/kg

HTSE
H2 gain KH2

htse 0.00724 kg/MJ

O2 gain KO2

htse 7.94 -
Time constant τhtse 1 s

Wind

No. of turbines nT 15 -
Cut-in speed Ucut−in 3 m/s
Rated power speed Urated 14 m/s
Cut-out speed Ucut−out 25 m/s

Grid Target load Pdemand 100 MWe

Table 1: Fixed system properties and simulation pa-

rameters.

turbine diameter of 53 m, for an overall gain value of

kwind = 7.28×10-4 MW-s3/m3 between the cut-in and

rated power wind speeds:

P = kwindU3 (13)

We also simplify the scaling problem by assuming that

the individual turbines, which constitute the renew-

able component of the HES, are separated sufficiently

far apart so as to not experience mutual interference.

A simple linear scaling in renewable power with the

number of turbines is thus used.

The fixed simulation parameter values are listed in

Table 1. The thermal and electrical outputs from all

system components are initialized to be zero in order

to analyze the impact of the initial start-up phase on the

overall system performance, and a constant electricity

profile of 100 MWe delivered from the HES to the grid

is assumed. For simplicity, we select a fixed HTGR

power output (135 MWe) that exceeds this output level

to ensure that the HTSE unit can be operated contin-

uously even when no renewable power is provided to

the system. This is necessary because frequently shut-

ting down the HTSE process entails a high cost while

also making the system susceptible to damage.

Given these considerations, it is logical to design

HES in which energy flow variability is minimized.

For this purpose, we define the objective function to

be minimized in our optimization problem as the total

amount of variability in the electrical power input to

the HTSE:

Pe
var(t) = |Pe

htse(t)− P̄e
htse| (14)

f (x) =

t f∫
0

Pe
var(t)dt (15)

where the quantity P̄e
htse is the time-averaged value of

electrical power input to the HTSE.

For optimization, this integral can be approximated

by first computing P̄e
htse, and then applying a numerical

integration scheme to the HES simulation data. Using

the trapezoidal method, we obtain the following form

of the objective function used by the optimizer:

f (x) =
n

∑
i=1

(ti − ti−1)
Pe

var,i +Pe
var,i−1

2
(16)

where n = 1009 is the number of time steps.

We consider two optimization problems, one uncon-

strained and one constrained. Three design variables

are considered in both cases: the time constants for

the battery (τbattery), HTGR (τhtgr), and Brayton cycle

(τbrayton). In the unconstrained case, the design vari-

ables are bounded but allowed to vary independently.

An arbitrary baseline case (τbattery = 3600 s, τhtgr =

1200 s, τbrayton = 600 s) is used as the starting point

for the optimization routine, and the following upper

and lower bounds shown in Table 2 are specified.

Variable Minimum Maximum
τbattery (s) 1800 18000
τhtgr (s) 240 3600
τbrayton (s) 180 3600

Table 2: Upper and lower bounds on design variables.

From an understanding of the physics governing the

performance of the system, we can expect the opti-

mizer to converge towards these bounds in the ab-

sence of constraints. This is because a larger time

constant for the battery allows greater smoothing of

the variability in the wind power profile, thus reducing

the variability of electricity distributed to the HTSE.

Conversely, a smaller time constant for the HTGR

and power cycle allows them to track the electrical

power demanded by the grid more closely, which again

would reduce variability in electricity directed to the

HTSE. Due to this understanding of the expected so-

lution, the unconstrained optimization problem serves

as a good benchmark case to verify whether the opti-

mizer performs as expected.

Of course, the unconstrained case provides limited

insight into the design of HES, because there are im-

portant constraints that need to be considered. As the

time constant of the battery increases, so does the min-

imum battery size required to accommodate the nec-

essary charging and discharging. This is illustrated

in Figure 7, where the renewable power profiles, with

and without the operation of the battery, are plotted to-

gether for three different battery time constants. To
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Figure 7: Effect of time constant on required battery

size and delivered electrical power.

facilitate a comparison between the three cases, the

difference between the two profiles is shaded (blue

for when the battery is being charged, red for when

it is being discharged). The required battery size (in

terms of energy storage capacity) is represented by the

largest shaded area, and is observed to increase with

the battery time constant. Since the capital and op-

erating costs of the battery are directly related to its

size, it is clear that a constraint is needed to assess a

penalty to increasing its time constant. Similarly, the

time constant for the HTGR and Brayton plant can-

not be arbitrarily decreased, as faster dynamics put a

greater strain on the system components and lead to

damage and reduced reliability - ultimately leading to

increased total cost.

To address these cost issues, we consider a second

optimization problem in which the following linear

constraint is applied to the design variables:

c1(x) = k1τbattery − k2τhtgr − k3τbrayton − k4 ≤ 0 (17)

where the weighting coefficients (k1=1, k2=3.5, k3=1)

reflect the relative cost associated with each compo-

nent. The nuclear reactor is the most capital-intensive

of the three, and thus has the highest weight applied to

it in the constraint function. Note that the signs of the

coefficients manipulate the optimizer into decreasing

τbattery while increasing τhtgr and τbrayton. The coeffi-

cients are selected such that the constant term vanishes

(k4 = 0).

In addition to the linear constraint in Equation 17,

we also apply two nonlinear constraints governing the

relative speeds of the HTGR and Brayton cycle:

c2(x) =
τhtgr

τbrayton
−2 ≤ 0 (18)

c3(x) =
τbrayton

τhtgr
−2 ≤ 0 (19)

These two constraints are included to ensure that nei-

ther component becomes a significant bottleneck to the

other. Note that all constraints in this case are inequal-

ity constraints; our optimization problem does not con-

sider equality constraints (i.e., ĉ j(x) in Equation 10).

4 Results and discussion
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Figure 8: Progression of design variables (top) and ob-

jective function (bottom) for unconstrained optimiza-

tion problem.

Optimization results for the unconstrained problem

are shown in Figure 8. For illustration purposes, non-

dimensional time constants are plotted by normalizing
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using the upper and lower bounds reported in Table 2:

τ∗
i =

τi − τi,min

τi,max − τi,min
(20)

As expected, the optimizer converges the battery time

constant to the upper bound, and the others to their

lower bounds. The value of the objective function

at the optimum is f (x) = 1181.1 MW-hr, which rep-

resents a reduction of 17.7% in the HTSE electrical

power variability. Although this may not seem like an

especially large improvement, the impact can in fact

be quite substantial due to the highly capital-intensive

nature of HES. A substitution of the unconstrained

optimum into Equation 17 shows that the linear cost

constraint is not satisfied, and thus the unconstrained

optimum is not a feasible solution for the constrained

problem.

As shown in Figure 9, the constrained optimum is

located at τbattery = 15311 s, τhtgr = 3600 s, τbrayton =

2712 s, with HTSE variability of f (x) = 1275.5 MW-

hr - a 11.2% improvement over the baseline case. The

HTGR time constant experiences the most significant

change compared to the unconstrained case, increas-

ing from its minimum to its maximum bound. This

is due to the high weighting assigned to the cost con-

straint c1. Although the HTSE variability is increased

by 6.5% compared to the unconstrained case, this loss

is outweighed by the benefits in operational costs due

to fast reactor dynamics. Note that in the final solu-

tion, the linear constraint c1 is active since the con-

straint function value is equal to numerical zero, while

the nonlinear constraints c2 and c3 are inactive. This

can be verified by inspection using Equations 17-19. A

comparison of the optimization solutions with respect

to the baseline case is summarized in Table 3.

Baseline Unconstrained Constrained
τbattery (s) 3600 18000 15311
τhtgr (s) 1200 240 3600
τbrayton (s) 600 180 2712
f(x) (MW-hr) 1435.4 1181.1 1275.1

Table 3: Design variables and objective function

results for baseline, unconstrained, and constrained

cases.

In addition to considering the values of the design

variables, constraints and objective function at the op-

tima, it is also important to examine the HES simula-

tions themselves to gain a better understanding of the

physics occurring within the system. Figure 10 plots

the electrical power profiles in the HTSE for the three

cases, as well as the mean power level in each case.
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Figure 9: Progression of design variables (top), ob-

jective function (middle), and constraints (bottom) for

constrained optimization problem.

The shaded area between the two is the numerically

integrated area used to compute the value of the ob-

jective function. We note that in both optimization

cases, not only is the total shaded area reduced, but

the power profile is also generally smoother, with fluc-

tuations of lesser amplitude and frequency. The main

difference between the unconstrained and constrained

solutions occurs in the initial ramping of the HTSE,

where the constrained case incurs a substantial penalty

due to slower reactor and power cycle dynamics. This

is a direct consequence of the initial conditions in the

problem formulation. For example, a long-term analy-

sis that ignores the start-up phase of the system would

likely exhibit a smaller difference between the two so-

lutions.
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Figure 10: HTSE power profile for baseline, uncon-

strained, and constrained cases.

5 Conclusions and future work

In this paper, we have successfully established a com-

putational framework for simulating and optimizing

the performance of HES by interfacing the Modelica

system model with analysis and optimization tools via

the FMI for model exchange. Results from two op-

timization problems, one unconstrained and one con-

strained, illustrate the complex interplay between HES

system components in the presence of high variability

in the renewable power source. These preliminary re-

sults also highlight the difficulty of designing resilient

and robust systems, again due to the high degree of

variability and uncertainty over the lifespan of the sys-

tem. The results obtained in this study represents an

important step towards our goal of developing a flexi-

ble, efficient, and expandable framework for optimiz-

ing HES and achieving a level of understanding of the

system dynamics and performance that would enable

the deployment of HES in real world applications.

An important focus of future research efforts will

be the models of the HES components. Since the

main objective of the present study is to demonstrate

the framework and to gain a better understanding of

the performance of HES through simulations, the sim-

plistic but computationally efficient signal-based HES

model is considered adequate in this case. However,

to properly utilize the available analysis and optimiza-

tion tools, a system that more closely models the rel-

evant physical phenomena is needed. This would

entail replacing the signal block component models

with, for example, process models for the HTSE [14]

and equivalent-circuit models for the battery [15]. To

retain reasonable computational cost, reduced-order

models constructed using surrogate-based techniques

may also be applied [16, 17, 18]. Furthermore, a

comprehensive design process for such systems must

take into account a large number of variables and con-

straints, which cannot be investigated to a sufficient

level of detail using the present model. Therefore,

current efforts are aimed at creating higher fidelity,

physics-based models to incorporate into the compu-

tational framework established in this study.

Another topic that warrants future investigation is

the comparison of different HES configurations and

assessment of new technologies. A valuable benefit

of conducting the simulations in Modelica is the flexi-

bility of the resulting framework, allowing for certain

model components to be readily replaced with those

representing different technologies - and for the per-

formance of the different systems to be directly com-

pared. For instance, we may be interested in examin-

ing the relative performance of nuclear and natural gas

power plants, or the relative cost of electrical versus

thermal storage in grid-scale applications.

Finally, our present efforts have focused on design

optimization - i.e., optimizing certain properties of the

system components. Another equally important con-

sideration, however, is the operation of the HES after

it has been properly designed. In the present study, pa-

rameters related to the system operation (such as those

located in the helium and electricity distribution cen-

ters) are assigned fixed empirical values; the proper

operation of the system will require incorporation of

additional factors such as economics and energy ef-

ficiency into optimization problems of much greater

scale.
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